
22 CROSSTALK The Journal of Defense Software Engineering November 2003

This may seem an obvious point to
CrossTalk readers, but many

members of the Department of Defense
modeling and simulation community are
not software engineers. Therefore, the
model’s software implementation must be
analyzed as well as the model itself.

The security model for many missile
defense simulations is similar to that used
in the heyday of the U.S. Army’s nuclear
weapons training. When virtually all U.S.
Army medium and heavy artillery batteries
were nuclear capable, it was necessary to
conduct training for units, particularly
Reserve Component units that did not
have secure facilities to handle classified
models. The result was an unclassified
training system that only provided classi-
fied results when given actual weapons
performance data. Soldiers were thus able
to train on how to do the targeting calcu-
lations without handling classified infor-
mation as shown in Figure 1.

Applying this model to missile defense
simulations is more difficult because the
calculations are much more complex, and
there are many more parameters to deal
with. Furthermore, these simulations are
implemented in software, and that increas-
es the complexity. Therefore, the Missile
Defense Agency’s Models and Simulation
Directorate (MDA/SES) developed a vul-
nerability assessment process in partner-
ship with Auburn University’s Infor-
mation Assurance Laboratory. We next
describe the process and the environment
that framed our process.

Assessing the Threat
U.S. missile defense programs, training,
tactics, and procedures are a matter of

intense interest to foreign intelligence
agencies. Intelligence agencies do not
face the same economic constraints, as
do practitioners of economic espionage.
For this reason, military-relevant soft-
ware may be attacked in ways that would
not be feasible for an industrial reverse-
engineering application.

An unclassified analysis of one mis-
sile defense simulation Web site showed
that nearly one third of the site’s hits

could be traced back to the People’s
Republic of China [1]. The largest num-
ber of recorded hits came from Beijing,
and this was more than twice the number
of hits from any other country, including
the United States. This obviously does
not include undetected intrusions.

Defining a Process
Information compiled into binary code is

not secure. Just because it is hard to
extract information from a binary file
does not mean it is impossible to do so
[2]. As shown in Figure 2, our process
analyzes inputs, outputs to the simulation
software, and the executable binaries.

Phase 1: Inputs
When analyzing the system inputs, we
look at how well we can simulate a sys-
tem based on open-source data. Next,
we search for buffer overflows. Given
the popularity of the C programming
language, it is usually not hard to find a
buffer overflow – either in the applica-
tion or in the operating system it is run-
ning on. Whether a buffer overflow can
be used to compromise sensitive infor-
mation in the application remains to be
seen. Theoretically, one could jump to a
code segment written to start dumping
out intermediate calculations. Operating
systems are written in C and are vulnera-
ble to buffer overflows, too.

Buffer overflows can be used for
more than just jumping a program to an
unauthorized code segment. We found
that entering control characters into an
entry screen would bring up a debugger
providing important clues on how the
program was originally compiled.

What if the simulation developers
used explicit bounds checking for every
input? One thing to look for is any sen-
sitive information that can be gleaned
from the bounds. An interceptor that has
actual minimum and maximum ranges as
bounds would be an example of a possi-
ble vulnerability.

Phase 2: Attacking the System
Simulation software runs on top of
operating systems. On distributed simu-
lation implementations, operating system
vulnerabilities may be exploited to
remotely compromise the simulation
software. It is often instructive to study
the installed files of a software distribu-

Defining a Process for
Simulation Software Vulnerability Assessments

Gordon Evans
Booz Allen Hamilton

The need for simulation software vulnerability assessment is being driven by three major trends. They are increased use of mod-
eling and simulation for training and operational planning, increased emphasis on coalition warfare and interoperability, and
increased awareness of the potential security risks inherent in sharing operationally useful software. This article will describe
in an unclassified manner the process developed by the U.S. Missile Defense Agency and Auburn University to evaluate poten-
tial vulnerabilities in shared simulation software.

Software Engineering Technology

Dr. John A. Hamilton Jr.
Auburn University

Col. Kevin J. Greaney
Missile Defense Agency

unclassified results

classified results
Weapons Effects

Calculations

notional weapons data

actual weapons data

Figure 1: U.S. Army Nuclear Weapons Training Model Circa 1980 (Unclassified)

“An unclassified
analysis of one missile

defense simulation Web
site showed that

nearly one third of the
site’s hits could be
traced back to the
People’s Republic

of China.”

November 2003 www.stsc.hill.af.mil 23

tion to learn more about the program
structure and contents.

A good definition for reverse engi-
neering can be found at [3]. Van Deursen
defines reverse engineering as,

The process of analyzing a sub-
ject system with two goals in
mind: (1) to identify the system’s
components and their interrela-
tionships, and (2) to create repre-
sentations of the system in anoth-
er form or at a higher level of
abstraction. [3]

In this process, we look at both disas-
sembly of code as well as decompilation.

Disassembly is reconstructing assem-
bly language code from a binary. Eric
Imsand and Adam Sachitano have disas-
sembled missile defense simulations
using dis on Solaris and a shareware pro-
gram called Hackman on Windows plat-
forms. Both dis and Hackman are disas-
sembly programs. They report the fol-
lowing:

The Hackman application ran eas-
ily. After launching the program,
it was simply a matter of selecting
the tool, either a hex editor or dis-
assembler, and choosing the file
to open. Hackman opened the file,
and disassembled it without fur-
ther user interaction. The entire
disassembly process took approx-
imately six hours running on a
400 MHz Intel Celeron processor
with 128 MB of RAM. [4]

Imsand and Sachitano produced
about one gigabyte of assembly code and
were later able to reassemble the binary
and successfully run it.

With assembly code in hand, it is pos-
sible to insert additional instructions to
create a modified binary that dumps

every variable value to an output device.
It is also possible to search for string lit-
erals.

Decompilation is the generation of
high-level source code from low-level
input [5]. We have experienced little suc-
cess in decompiling, primarily due to our
reliance on freeware and shareware tools.
Commercial decompilers are available
and the state of the art in this area con-
tinues to improve.

Weide, Heym, and Hollingsworth dis-
cuss reverse engineering of large legacy
software systems. They conclude that the
reverse engineering of such systems is
intractable in the sense that if one is given
real (high-level) legacy code, the time
required to show the validity of an expla-
nation for why it exhibits a certain
behavior is at least exponential compared
to the size of the source code [6].
However, their same paper asserts a
caveat that is repeated here: “This does
not mean that the task is impossible. It
means that it is prohibitively costly for
large systems” [6]. We would add that
what is prohibitively expensive in the
commercial sector is not necessarily pro-
hibitively expensive for a high-priority
intelligence effort.

Phase 3: Outputs
We attempt to determine the internals of
the programs by analyzing the outputs
and their sensitivity to changes based on

carefully chosen inputs. In general, we
believe that missile defense simulations
of any importance are too complicated
to make this a useful strategy for reverse
engineering the simulation. However, it
is possible to gain insight into specific
aspects of the simulation by constantly
running it and making minor changes to
the input and tracking the changes.
These one off test cases are constructed
by varying only one input parameter. If
the simulation is well documented, this
strategy can be used in conjunction with
an analysis of the documentation to
determine internal relationships between
parameters.

Refining and Applying the
Process for Different Levels
of Assurance
Given the costs associated with vulnera-
bility analysis, we defined three sets of
tasks providing three levels of assurance:
High, Medium, and Low. These cate-
gories reflect the level of effort required
for the analysis. The requirements for
each are enumerated in Table 1.

It is important to recognize that any-
thing sensitive in the source code is vul-
nerable. It is hard, time consuming, and
expensive to get at it – but it is naïve to
think that a hostile intelligence agency
would not make such an attempt. Next,
we address each item in Table 1.
• Source Code. A line-by-line verifica-

Defining a Process for Simulation Software Vulnerability Assessments

Simulation
Inputs (files or
interactives)

Simulation
Software
Program

Simulation
Outputs

1. Experimentation with "open
 source" system data.
2. Privilege escalation
 via buffer overflows.
3. Analysis of bounds
 checking if implemented.

1. Exploitation of operating
 system vulnerabilities.
2. Analysis of installed files.
3. Decompilation and
 disassembly of targeted
 executables.

1. Sensitivity Analysis of
 output based on input
 changes.
2. One "off" test cases to
 examine relationships.

Figure 2: Process for Simulation Software Vulnerability Analysis

High Assurance Level Medium Assurance Level Low Assurance Level

Line-by-line verification of source
code.

Line-by-line verification of selected
source code.

Line-by-line verification of selected
source code.

Professional decompilation of
executables.

String search on disassembled
code.

String search on disassembled
code.

Complete review of published
documentation.

Targeted review of published
documentation.

Targeted review of published
documentation.

Open source review of weapons and
systems data.

Open source review of weapons and
systems data.

Analysis of degree of
parameterization.

Analysis of simulation runs to
evaluate training, tactics, and
procedures.

Analysis of simulation runs to
evaluate training, tactics, and
procedures.

Analysis of degree of
parameterization.

Analysis of degree of
parameterization.

Table 1: Assurance Levels for Simulation Software Vulnerability Analysis

24 CROSSTALK The Journal of Defense Software Engineering November 2003

Software Engineering Technology

tion of a simulation with a million+
lines of code is nontrivial. Worse,
there is no guarantee that such a mas-
sive effort will uncover all potential
security issues. However, it is the best
way to detect problems. Software
engineering research has long held
that the best way to find any problem
in software is through desk-checking
the source code. In most cases, a line-
by-line verification will not be war-
ranted. If (and this is a big if) the sim-
ulation software is well structured,
then it is reasonable to exclude large
portions of the code and simply
focus on the modules that deal with
sensitive issues. It can be argued that
a more focused review of high-risk
code could potentially be more fruit-
ful than plowing through a massive
program in its entirety. Any source
code provided, as part of the distri-
bution must be reviewed. Source
code analysis can give you a worst-
case vulnerability assessment.

• Decompilation/Disassembly. De-
compilation and disassembly can be
used to provide an expected case
analysis. We pursue this to see what a
potential adversary can learn from the
binaries. For high assurance require-
ments, we recommend using profes-
sionals to decompile the binaries.
Open market decompilers (available
to a university anyway) are not yet to
a point where experienced software
engineers can gain useful results
through reasonable efforts. We have
no insight into what tools are avail-
able in the world of restricted access
programs, but we believe that much
better tools are theoretically possible
and practical. Dissemblers are readily
available and useful. It is reasonable
to write scripts to do string searches
on massive assembly code files and
prudent to do that. In all cases, the
binaries should be checked to make
sure that all debugging information is
stripped before the binaries are
released.

• Documentation Review. Documen-
tation of simulations must be includ-
ed in the distribution [7]. Some simu-
lations include more than 1,000 pages
of documentation. Documentation is
critical to the successful utilization of
a simulation. As Sargent notes:

Documentation on model ver-
ification and validation is usu-
ally critical in convincing users
of the ‘correctness’ of a model
and its results, and should be

included in the simulation
model documentation. [8]

The caveat to Sargent’s assertion is
that the documentation must be
reviewed to make sure that no sensi-
tive information is inadvertently
released. The physics of missile tra-
jectories are not sensitive; probability
of kill for a given system is very sen-
sitive.

• Open Source Review. There is a
great deal of published information
on missile and missile defense sys-
tems, particularly older ballistic mis-
sile systems such as scuds. One way
to exercise a simulation is to create

models from open source material
and then experiment with them.

• Analysis of Simulation Runs.
Using open source inputs provides
the means to develop simulation runs
and analyze the outputs. The objec-
tive is to reduce the number of
unknowns in the system. The more
known information that can be input,
the easier the analysis.

• Analysis of Degree of Parameter-
ization. Essentially, we want to verify
that the model is unclassified and that
classified results are only produced
when classified parameters are used.
If there are default values, then those
values need to be checked to see if
any are sensitive in nature. In general,
the greater the degree of parameteri-
zation, the closer the simulation
approximates the model in Figure 1.

Conclusion
In most cases, we believe that a medium
assurance assessment is sufficient.
Before we share simulations (missile
defense or others) with our coalition
partners, it is essential to know what we
are sharing.

This research has demonstrated a
viable, scaleable means of assessing the
vulnerability of complex simulation soft-
ware. We believe this methodology is
appropriate for use with other simulation
programs. It is always difficult to prove a
negative. We do not claim that our
process can prove the absence of vulner-
abilities or find every vulnerability in
every software implementation. How-
ever, this process can provide an impor-
tant means of risk mitigation. We believe
the process defined here can successfully
identify vulnerabilities in simulation soft-
ware.◆

References
1. Mann, Steve. “Default Report Web

Site Visitors.” WebTrends. NetIQ
Corporation, Internal Report. 17 May
2002: 41.

2. Viega, John, and Gary McGraw.
Building Secure Software. Boston,
MA: Addison-Wesley, 2002: 109.

3. Van Deursen, Arie. “Reverse
Engineering.” Jan. 2003 <www.
program-transformation.org/twiki/
b i n / v i e w / Tr a n s f o r m / Re ve r s e
Engineering>.

4. Imsand, Eric, and Adam Sachitano.
“Analyzing Security Vulnerabilities in
National Missile Defense Simulation
Software.” Unpublished, Nov. 2002.

5. Breuer, Peter T., and Jonathan P.
Bowen. “Decompilation: The Enu-
meration of Types and Grammars.”
ACM Transactions on Programming
Languages and Systems 16. 5 (1994).

6. Weide, Bruce W., Wayne D. Heym, and
Joseph E. Hollingsworth. Reverse
Engineering of Legacy Code Exposed.
Proc. of the 17th International
Conference on Software Engineering,
Seattle, WA. New York: ACM Press,
1995: 327-331.

7. Chatham, Wade. “A Vulnerability
Analysis with an Emphasis on Using
Documentation.” Unpublished, Nov.
2002.

8. Sargent, R. “Verifying and Validating
Simulation Models.” Proc. of the 28th
Winter Simulation Conference,
Coronado, CA. New York: ACM
Press, 1995: 55-64.

“It is important to
recognize that anything
sensitive in the source

code is vulnerable.
It is hard, time
consuming, and

expensive to get at it –
but it is naïve to

think that a hostile
intelligence agency would

not make such an
attempt.”

November 2003 www.stsc.hill.af.mil 25

Defining a Process for Simulation Software Vulnerability Assessments

About the Authors

Col. Kevin J.
Greaney, U.S. Army, is
the director, Models
and Simulations, Mis-
sile Defense Agency.
Prior to his assign-

ment, Greaney served as the com-
mander of the Communication
Electronics Command Software
Engineering Center-Meade from
September 1997 through September
2000. Greaney was selected as a
Distinguished Military Graduate prior
to his commission as a second lieu-
tenant. He has a Bachelor of Arts
from Northeastern University, a
Master of Science from Shippens-
burg University, a Master of Arts
from Webster University, and is cur-
rently pursuing a doctorate in soft-
ware engineering from the Naval Post
Graduate School.

Missile Defense Agency
Pentagon
Washington, D.C.
Phone: (703) 697-4360
Fax: (703) 695-6133
E-mail:kevin.greaney@bmdo.osd.mil

John A. “Drew”
Hamilton Jr., Ph.D.,
is an associate profes-
sor of computer sci-
ence and software engi-
neering at Auburn

University and director of Auburn
University’s Information Assurance
Laboratory. Prior to his retirement
from the U.S. Army, he served as the
first director of the Joint Forces
Program Office and on the staff and
faculty of the U.S. Military Academy,
as well as chief of the Ada Joint
Program Office. He has a Bachelor of
Arts in journalism from Texas Tech
University, masters degrees in systems
management from the University of
Southern California and in computer
science from Vanderbilt University,
and a doctorate in computer science
from Texas A&M University.

Auburn University
107 Dunstan Hall
Auburn, AL 36849
Phone: (334) 844-6360
Fax: (334) 844-6329
E-mail: hamilton@eng.auburn.edu

Gordon Evans is a
consultant for Booz
Allen Hamilton work-
ing on-site at the
Missile Defense Agen-
cy (MDA). His areas of

concentration have been in systems
engineering, command and control,
modeling and simulations, interna-
tional programs, and technology
transfers. He has been the lead MDA
designer and investigator for its
Modeling & Simulation Vulnerability
Assessment program. Evans retired
from the U.S. Army in 1992 as a lieu-
tenant colonel. During his military
service, he served in multiple Field
Artillery and Military Intelligence
assignments. Overseas assignments
have been in Germany, Korea, and
Vietnam.

Booz Allen Hamilton – MDA/SES
Pentagon
Washington, DC
Phone: (703) 697-4582
Fax: (703) 695-6133
E-mail: gordon.evans-contractor

@ bmdo.osd.mil

20
03

 U
.S

. G
O

V
E

R
N

M
E

N
T

'S

TOP 5 QUALITY SOFTWARE PROJECTS

CROSSROSSTALKALK
The Journal of Defense Software EngineeringThe Journal of Defense Software Engineering

FOR MORE INFORMATION OR TO ENTER,

PLEASE VISIT OUR WEB SITE

wwww.stsc.hill.af.mil/crosstalkww.stsc.hill.af.mil/crosstalkww.stsc.hill.af.mil/crosstalkwwww

2003 U.S. Government's Top 5 Quality Software Projects

The Department of Defense and CrossTalk are currently accepting
nominations for the 2003 U.S. Government's Top 5 Quality Software Projects.
These prestigious awards are sponsored by the Office of the Under Secretary of
Defense for Acquisition, Technology, and Logistics, and are aimed at honoring
the best of our government software capabilities and recognizing excellence in
software development.

The deadline for the 2003 nominations is December 5, 2003. You can review the
nomination and selection process, scoring criteria, and nomination criteria by
visiting our Web site. Then, using the nomination form, submit your project for
consideration for this prominent award.

